Please answer TWO of the following three questions

1. Algebra

Consider a sequence \(\{a_n\} \). The sum from the first term to the \(n \)th term of the sequence is denoted \(S_n \), and satisfies:

\[
S_n = 2a_n - n \times 2^{n+1} \quad (n = 1, 2, 3, \ldots)
\]

a) Calculate \(a_1 \) and \(a_2 \).

b) Express \(a_{n+1} \) in terms of \(a_n \) and \(n \) by calculating \(S_{n+1} - S_n \).

c) \(b_n \) is defined as follows:

\[
b_n = \frac{a_n}{2^n}.
\]

Express \(b_n \), then \(a_n \) in terms of \(n \).

2. Geometry

In this question, \(x \) and \(y \) are real numbers.

a) Sketch a graph of the following equation:

\[
(x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 = \frac{1}{2}.
\]

b) Sketch the region that satisfies the following inequality:

\[
x^2 + y^2 \leq |x| + |y|.
\]

c) Find the area of the region described in (b).

3. Calculus

Consider the function \(f(x) \), defined as follows:

\[
f(x) = \int_a^x (t - a)(t - b) \, dt,
\]

where \(a \) and \(b \) are real constant values.

a) Evaluate the function \(f(x) \) in terms of \(a \) and \(b \).

b) Find the values of \(a \) and \(b \) that satisfy the following three conditions on \(f(x) \):

i. \(f(x) \) has a maximum or minimum at \(x = \frac{1}{2} \),

ii. \(f(a) - f(b) = \frac{1}{6} \),

iii. \(f'(0) > 0 \).

c) Determine all maxima and minima of \(f(x) \), and sketch the function.